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Noise and synchronization in chaotic neural networks
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We show that two identical fully connected chaotic neural networks can always achieve a stochastic syn-
chronization state when linked with a sufficiently large common noise. This is the case for both low-
dimensional hyperchaos and high-dimensional spatiotemporal chaos. When the parameters of the two driven
systems possess a tiny difference, weakly noise-induced synchronization is obtained. Unstable finite-precision
synchronization of chaos with positive conditional Lyapunov exponent is also observed. It is caused by the
on-off synchronizing intermittent dynamics.@S1063-651X~98!10106-X#

PACS number~s!: 87.10.1e, 05.45.1b
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It is well known that a criterion for the occurrence
chaotic behavior in deterministic systems is their sensi
dependence on initial conditions. However, theoretical st
ies and practical experiments show that coupled chaotic
tems possess the property of synchronization@1–5#. On the
other hand, the effects of additive noise on chaos are stu
in various systems. It turns out that, close to bifurcations
crisis and also for chaotic windows, noise tends to amp
chaoticity@6–8#. At parameter values with chaotic dynamic
the Lyapunov exponents are robust against small fluctuat
in most cases@9#. The effect of noise on the synchronizatio
of chaotic systems is also studied@10#. It is shown that syn-
chronization will not occur if driving dynamical chaos
added with noise. This matches the common thought tha
low-dimensional systems, chaos is favored by small exte
noise@9#.

The system driven by noise is a stochastic one. Ca
synchronization state be achieved when two identical s
tems with slightly different initial conditions are driven b
the same noise? This question is closely related to the p
lem of generalized synchronization@4,11–14#. However, the
driving signal used here is noise rather than chaos. Rece
considerable attention has been drawn to the problem
noise-induced synchronization in chaotic systems@15–25#.
With these studies and arguments, the effects of noise
chaos are investigated in detail. The conditional Lyapun
exponent~CLE! can be defined for systems driven by noi
@15#. With small noise, the driven systems often still poss
positive CLE’s. Although they cannot achieve a chaotic s
chronization state@15,24#, two chaotic systems subjected
the same noise with a sufficiently large amplitude hav
much higher probability of approaching each other than
the absence of noise@19#. As a result, finite-precision syn
chronization can be obtained@18,23#. A chaotic attractor
means that the overall rate of expansion of the trajectorie
larger than that of contraction. Disturbed by a sufficien
large noise, the trajectories are often driven out of this c
otic attractor. In this case, if the system is still stable, it oft
implies that the overall rate of contraction of the trajector
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becomes large. Thus, the CLE’s of the driven system m
become negative and a stable synchronization state ca
obtained. A sufficiently large noise often changes the cha
nature of the systems and so the resultant attractor is stoc
tic, rather than chaotic@22#. In other words, the stable syn
chronizing state is stochastic for systems driven by no
while the generalized synchronization state@4,11–15# is cha-
otic due to the chaotic driving signal.

There was a common thought that synchronization of
perchaos cannot be achieved with a scalar driving cha
However, some approaches for the synchronization of hyp
chaos with scalar chaos were proposed recently@26–28#.
There are also studies on the synchronization of hi
dimensional spatiotemporal chaos with scalar driving ch
@14,29,30#. As the discussions on noise-induced synchro
zation @15–25# by now are mainly based on simple chao
systems such as the logistic map or Lorenz equations
interesting question arises: Can a common scalar noise d
two identical hyperchaotic systems to synchronization? T
main objective of this paper is to give a definite answer
this question by using a chaotic neural network@31,32# as an
example. Similar to the synchronization of hypercha
@14,26#, one of the possible applications of noise-induc
synchronization with a hyperchaotic system is in the field
secure communications.

In the first part of the paper, we will show that two ide
tical low-dimensional hyperchaotic systems driven by a s
ficiently large noise can be transformed to a stochastic s
and achieve synchronization. Here we will also point o
that, when the CLE’s of the system driven by noise are po
tive, it is the on-off synchronizing intermittent dynamics th
causes the chaotic trajectories to have a much higher p
ability to approach each other. As a result, finite-precis
synchronization of chaos@18,23# is obtained.

Neural networks are systems formed by a large numbe
interconnected neurons. For these systems, the corresp
ing chaotic attractors are often referred to as spatiotemp
ones. In this paper, we will discuss the possibility of t
occurrence of noise-induced synchronization in hig
dimensional chaotic neural networks. The goal is to und
stand how scalar noise drives the dynamics of the spatiot
poral chaotic neural networks to a stochastic synchroniz
state. This question is related to the recent research inte
7002 © 1998 The American Physical Society
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57 7003NOISE AND SYNCHRONIZATION IN CHAOTIC NEURAL . . .
in understanding globally coupled systems driven by no
@33–35#. In Ref. @33#, by using the dynamical mean-fiel
equation, it is pointed out that in high-dimensional syste
where chaos is due to interactions between nonchaotic
rons, noise can impair the information flow between the
neurons and therefore tends to suppress chaos. We will
cuss, in the view of synchronization, the case of neural n
works consisting of chaotic neurons. Our result entails
much stronger statement that, even for the high-dimensio
spatiotemporal complex system, the resultant highly err
and random trajectories become independent of the in
positions; i.e., they fall into a synchronization state.

Consider a nonmonotonic neural network model that c
sists ofN analog neurons$Si(t)%, i 51, . . . ,N. Each neuron
Sj is connected to all other neuronsSi by couplingsJi j . We
use parallel dynamics for the updating of neurons:

Si~ t11!5 f „hi~ t !…, i 51, . . . ,N. ~1!

Here hi(t) is the weighted input of thei th neuron and is
expressed as

hi~ t !5(
j 51

N

Ji j Sj~ t !, i 51, . . . ,N. ~2!

The activation functionf (x) of the neurons is nonmonotoni
@31,32#:

f ~x!5tanh~ax! exp ~2bx2!. ~3!

With the function~3!, we haveuSi u,1. A significant differ-
ence between this and the logistic map investigated
@17,20,21# is that the input space is unbounded for the form
map, while it is bounded to@21, 1# in the latter case. As a
result, a noise with large amplitude often destroys the sta
attractor of the logistic map before the stable synchroniza
state is reached. This is the reason why noise cannot d
chaos to a synchronization state@20,21#. In contrast to this, a
function with an infinite input boundary is used in our stu
and so noise with any amplitude can be applied. Thus
different result is obtained.

We consider a four-neuron model with parametersa
56.0 andb510.0 and synaptic connection matrixJ:

J5S 1.0 0.1 20.9 20.3

0.5 0.9 0.2 0.0

20.7 0.4 20.3 0.1

0.5 0.1 0.2 1.0

D . ~4!

In this case,uSi u,0.58. Simulation results show that the a
tractor is hyperchaotic with the four Lyapunov expone
being 0.660, 0.353, 0.008, and20.714 (60.002), respec-
tively. If there is no interconnection, i.e.,J50, each neuron
is in the chaotic state. Now we discuss the simulation res
of noise-induced synchronization with this hyperchaos.

Suppose that the corresponding neurons in the two id
tical neural networks are disturbed by a common rand
noiseh with amplitudeh0. Mathematically,

Si~ t !1h0random~21,1!:⇒Si~ t !. ~5!
e
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Computer simulations show that when the first neuron
driven by noise withh0>1.09, synchronization can b
achieved. This can also be found in the second and the t
neurons withh0>4.8 and 2.3, respectively. To show th
distance between the two trajectories, the average abso
difference^DS(t)& is defined:

^DS~ t !&5
1

N (
i 51

N

uSi8~ t !2Si~ t !u. ~6!

Figure 1 shows a plot of time versus the logarithm of t
average absolute difference^DS(t)& when the first neuron is
driven by noise withh051.3.

The CLE’s can be calculated from the tangent space
the neural dynamics. Again, the first neuron of the chao
neural network is driven by a common noise term and a p
of the four CLE’s versus noise amplitudeh0 is shown in Fig.
2, in which one can see that whenh0.1.244, the four CLE’s
are all negative, and so stable hyperchaotic synchroniza

FIG. 1. A plot of time versus the logarithm of the average a
solute differencêDS(t)& of the two neural networks when the firs
neuron is driven by noise of amplitudeh051.5.

FIG. 2. The four CLE’s (l i . i 51, . . . ,4) of theneural net-
works versus noise amplitudeh0. Here, region I corresponds to th
asychronization state; region II corresponds to the unstable fin
precision synchronization of chaos with positive CLE; region
corresponds to the stable stochastic synchronization state.
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7004 57J. W. SHUAI AND K. W. WONG
can be obtained. For example, the four CLE’s are20.075,
20.713,21.932, and24.805, respectively, whenh051.3.

Simulation results also show that synchronization can
be achieved in the interval 1.09,h0,1.244 where the maxi-
mum CLE is positive. For example, whenh051.2, the four
CLE’s are 0.055,20.550, 21.595, and24.173, respec-
tively. This phenomenon is referred to as the finite-precis
synchronization of chaos@18,23#. It is pointed out@36# that
chaotic systems driven by noise~or chaos! possess the on-of
intermittency property if both the following criteria are sa
isfied: ~a! there exists a lower-dimensional invariant hype
plane under the evolution of the system, and~b! there exist
orbits entering and leaving every sufficiently small neighb
hood of the hyperplane. In fact, the two criteria are natura
obeyed for the difference between the trajectories~i.e., DS
5S82S). This is because it is the difference of the driv
trajectories, rather than the driven trajectory itself, that c
structs an invariant hyperplane, i.e.,DS50. Here, we call it
the on-off synchronizing intermittency. One can see that
on-off synchronizing intermittency is an intrinsic charac
of synchronizing systems. As a result of this character,
trajectory can be driven, in a finite time interval, to the i
variant hyperplane (DS50), i.e., the contracting region
with high frequency even when the maximum CLE
slightly positive. As a result, the trajectories are driven
approach each other. When the distance between diffe
trajectories is smaller than the finite precision of compu
calculations, it is set to zero and remains at that value th
after. Finite-precision synchronization of chaos is th
achieved. For all the simulations reported in this paper,
synchronization state corresponds to the situation that
difference of two trajectories is smaller than 10218, which
cannot be distinguished in our computer.

In real applications, the synchronization is often affec
by the differences in parameters of the two driven syste
To investigate this, we let there be a small deviationda
between the corresponding parametersa anda8 of the two
networks, i.e.,da5a82a. The corresponding variationa
equation is

dSi~ t11!5 f S a8,(
j

Ji j Sj8~ t ! D 2 f Xa,(
j

Ji j Sj~ t !C
5(

j

] f „a,( j Ji j Sj~ t !…

]Sj
dSi~ t !

1

] f „a,( j Ji j Sj~ t !…

]a
da1o~da,dS!. ~7!

Suppose that there are also deviations in the parameterb and
the connecting matrixJ; we have

dSi~ t11!5(
j

] f

]Sj
dSi~ t !1

] f

]a
da1

] f

]b
db

1(
l ,m

] f

]Jlm
dJlm . ~8!
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One can see that the last three terms will not approach
even whendS(0)50. As a result, synchronization with
dS(t.0)→0 is forbidden in all cases, as confirmed by o
simulation results. However, if the parameters differ on
slightly, the last three terms are very small and so wea
noise-induced synchronization can be observed. Weak
chronization means that the difference of the two trajecto
S and S8 remains small in average. We define the avera
distancê ^DS&& of the two trajectories as

^^DS&&5
1

N
lim

T0→`

1

T12T0
(
i 51

N

(
t5T0

T1

uSi8~ t !2Si~ t !u. ~9!

An example is shown in Fig. 3 withT05500 000 andT1
5501 000. Compared with the first network, the slightly d
ferent parameters of the second one area56.01 andJ11
51.01. From the figure, one can see that the average dist
^^DS&& is smaller than 1023. It implies that, for sufficiently
small deviations in the parameters, the two driven trajec
ries remain weakly synchronized when the noise amplitu
is large enough.

From Fig. 3, one can see that, near the pointh051.1
where finite-precision synchronization is achieved in the c
of identical driven systems, the average distance of the
mismatch driven systems is in the order of 0.1. As a resul
its positive CLE, the finite-precision synchronization is u
stable. Compared with 10218, the disturbance caused by th
mismatch between the two driven systems can be consid
as a large noise. As a result, unstable finite-precision s
chronization can be easily destroyed by the disturban
Simulation results also show that, if the noise signal t
drives one of the two systems is disturbed by tiny noi
finite-precision synchronization cannot be obtained.

In fact, neural networks are spatiotemporal syste
formed by a large number of neurons~e.g., N>100) that
may possess spatiotemporal chaotic behavior. In the res
this paper, we discuss the possibility of scalar noise-indu
synchronization of spatiotemporal chaos. In Refs.@14,30#, as
a result of the cascade synchronizing dynamics, the s
tiotemporal chaos of the coupled logistic map lattice can
driven to a synchronization state by scalar chaos. Differ

FIG. 3. A plot of noise amplitudeh0 versus the logarithm of the
average distancê̂ DS&& of the two trajectories when the param
eters of the two driven neural networks differ slightly.



tio
ho
em
a
ti

f
in
u
o

to
r
ra
in
ve
o
th

ise

-
o
q

he

ee

.
on
to
n-
ex
e
w

as
on
e
d.
is

he

he
also
r a

for

lu-

f
nge
al
ex-

n

5
ge

iffer-

-

b-
t-

57 7005NOISE AND SYNCHRONIZATION IN CHAOTIC NEURAL . . .
from this, here it is because of the strong synaptic connec
that the scalar driving noise can be propagated to the w
network immediately and drive the trajectory of the syst
to the contracting region with high frequency. As a result,
of the neurons are enforced to the stochastic synchroniza
state gradually.

The phase-space region in which an attractor resides
chaotic dynamical systems can, in general, be divided
two subregions where a trajectory experiences either p
expansion or pure contraction. In particular, the expanding
contracting region is the region where an infinitesimal vec
in the tangent space either expands or contracts unde
dynamics. A typical path to synchronization is that the t
jectories are driven by a common signal to the contract
region with high frequency, and so the CLE’s are negati
In our model, the contracting regions are in the vicinity
the two extreme points and the two asymptotic points of
nonmonotonic neural functionf (x), i.e., d f(x)/dx,1. Now
let the first neuron of the neural networks be driven by no
the weighted input of thei th neuron is

hi~ t !5Ji1h~ t !1(
j 51

N

Ji j Sj~ t !, i 51, . . . ,N. ~10!

If all Ji1’s ( i 51, . . . ,N) are nonzero and the noise am
plitude h0 is large enough, due to the random character
connectionJ, the second term on the right-hand side of E
~10! approaches zero whenN is very large. It is very small
when compared with the first termJi1h(t) becauseuJi1h(t)u
is large enough with high probability. In other words, t
weighted input hi(t) is mainly determined by the term
Ji1h(t), i.e.,

hi~ t !'Ji1h~ t !. ~11!

Consider the variational equation for the difference betw
the two trajectories:

dSi~ t11!5 f 8~hi !(
j 51

N

Ji j dSj~ t !, ~12!

with

f 8~hi !5exp ~2bhi
2!@asech2~ahi !22bhi tanh~ahi !#.

~13!

To let udSi(t11)u,udSi(t)u, one can see that exp (2bhi
2) is

an important term; i.e.,bJi1
2 h2(t) should be large enough

For a given neural network, a sufficiently large comm
noise means that the trajectories are driven to the asymp
contracting region with high frequency. If the overall co
traction rate of the driven trajectories is higher than the
pansion one in the divergent regime, the distance betw
trajectories of the systems in the phase space decreases
time, and so the system is transformed to a stable stoch
attractor. In short, if a neuron connected to all other neur
of the neural network is driven by a sufficiently large nois
a stochastic synchronizing state can always be achieve
all uJi1u ’s are large enough, noise with small amplitude
capable of driving the networks to synchronization. T
asymptotic contracting region is mainly determined byb. A
n
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larger b means a wider asymptotic contracting region. T
consequence is that noise with a smaller amplitude can
drive the networks to synchronization. To summarize, fo
fully connected neural network~i.e., Ji j Þ0 for all i , j ), a
stochastic synchronization state can always be achieved
any neuron driven by noise.

The results of computer simulations confirm these conc
sions. In the simulation, the neural network consists ofN
5100 neurons witha56.0 andb510.0. The elements o
the connecting matrix are randomly selected from the ra
0.5,uJi j u,1.0. Both first neurons of the two identical neur
networks are disturbed by a common random noise. For
ample, Fig. 4 shows a plot of the noise amplitudeh0 versus
the difference between the two second neurons, i.e.,DS2(t)
5S28(t)2S2(t), with time from 20 000 to 20 300. Simulatio
results show that when the noise amplitudeh0>2.68, syn-
chronization can be achieved in this example. Figure
shows a plot of time versus the logarithm of the avera
absolute differencêDS(t)& between two trajectories with
h052.9. One can see that, at timet57400, all the neurons
are in synchronization states and the average absolute d
ence is smaller than 10218.

FIG. 4. A plot of noise amplitudeh0 versus the difference be
tween the two second neurons, i.e.,DS2(t)5S28(t)2S2(t). Here for
each fixedh0, 200DS2(t)’s are drawn with timet from 20 000 to
20 300.

FIG. 5. A plot of time versus the logarithm of the average a
solute differencê DS(t)& between two trajectories of neural ne
works with noise amplitudeh052.9.
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7006 57J. W. SHUAI AND K. W. WONG
Now we discuss the situations that some of theJi1’s are
zero. The first case is that onlyJ1150. As a result,

h1~ t !5(
j 52

N

J1 jSj~ t !,

hi~ t !'Ji1h~ t !, i 52, . . . ,N. ~14!

These equations imply that once thei th neuronsSi ~with i
.1) are driven by a sufficiently large noise to synchroniz
tion, the first neuronS1 is also driven to synchronization.

The situation with some otherJi1’s equal to zero is rathe
complex. The simplest case is that oneJi1 ( i .1) equals
zero, e.g.,J2150. Then we have

h2~ t !5J22S2~ t !1(
j 53

N

J2 jSj~ t !, ~15!

hi~ t !5Ji1h~ t !1Ji2S2~ t !1(
j Þ2

N

Ji j Sj~ t !, i 51,3, . . . ,N.

~16!

As the mean ofh2(t) is zero, the term exp (2bh2
2) has a high

probability to approach 1. Thus, unlike the oth
exp (2bhi

2) ~whereiÞ2), the term exp (2bh2
2) seldom con-

tributes a sufficiently small value to Eq.~13! even when the
noiseh(t) is large enough. As a result, one cannot alwa
obtainudS2(t11)u,udS2(t)u with large enough noise. It im
plies that, when the two neural networks are driven by
common noise, the initial differenceDS2(0)5S28(0)
2S2(0)Þ0 can always have an effect upondS2(t). Al-
though noise with a large amplitude can drive the neuronSi
( iÞ2) of the two neural networks to approach each oth
Eq. ~16! shows that the differenceDS2(t) always affects the
values of these neurons. One can say that, in the case
,

L.

ys

I.

s.
-

s

a

r,

hat

someJi1’s are zero, it is difficult to determine whether th
two neural networks can be driven to synchronize by
common noise. This depends on the particular connec
matrix. Only when all of the CLE’s are negative can a sta
synchronization state be obtained, as confirmed by the si
lation results. A simple example is a network with a conne
tion matrix stated in Eq.~4!. Simulation results show that
with the fourth neuron driven by noise~no matter how large
the noise amplitude is!, the two second neurons of the ne
works will not approach each other. The CLE associa
with the second neuron is always positive.

In summary, in fully connected neural networks, sca
noise can drive low-dimensional hyperchaos or hig
dimensional spatiotemporal chaos to a stochastic synchro
ing state. When the amplitude of scalar noise is la
enough, it can be propagated to all the neurons simu
neously and enforce the networks’ trajectory to the contra
ing regions with high frequency. As a result, trajectories w
different initial conditions will be driven to approach eac
other with high frequency. If the neuron driven by noise
not connected to all other neurons of the network, a synch
nization state cannot always be obtained no matter how la
the driving noise amplitude is. If the CLE’s of the drive
system are all negative, they will fall into a stable stochas
synchronization state. When the parameters of the two dri
systems differ slightly, weakly noise-induced synchroniz
tion can be obtained. Finite-precision synchronization w
positive CLE is also observed. It is caused by the on-
synchronizing intermittency of the driven systems. As a
sult of its unstable character, chaotic finite-precision s
chronization cannot be achieved if the two driven syste
are mismatched.

The authors would like to thank the City University o
Hong Kong for providing the Strategic Research Grant
this work.
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