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Noise and synchronization in chaotic neural networks
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We show that two identical fully connected chaotic neural networks can always achieve a stochastic syn-
chronization state when linked with a sufficiently large common noise. This is the case for both low-
dimensional hyperchaos and high-dimensional spatiotemporal chaos. When the parameters of the two driven
systems possess a tiny difference, weakly noise-induced synchronization is obtained. Unstable finite-precision
synchronization of chaos with positive conditional Lyapunov exponent is also observed. It is caused by the
on-off synchronizing intermittent dynamicsS1063-651X98)10106-X

PACS numbd(s): 87.10+e, 05.45+b

It is well known that a criterion for the occurrence of becomes large. Thus, the CLE’s of the driven system may
chaotic behavior in deterministic systems is their sensitivdbecome negative and a stable synchronization state can be
dependence on initial conditions. However, theoretical studebtained. A sufficiently large noise often changes the chaotic
ies and practical experiments show that coupled chaotic systature of the systems and so the resultant attractor is stochas-
tems possess the property of synchronizafibn5]. On the tic, rather than chaotif22]. In other words, the stable syn-
other hand, the effects of additive noise on chaos are studiechronizing state is stochastic for systems driven by noise
in various systems. It turns out that, close to bifurcations owhile the generalized synchronization stptel1-19 is cha-
crisis and also for chaotic windows, noise tends to amplifyotic due to the chaotic driving signal.
chaoticity[6—8]. At parameter values with chaotic dynamics, There was a common thought that synchronization of hy-
the Lyapunov exponents are robust against small fluctuationserchaos cannot be achieved with a scalar driving chaos.
in most casef9]. The effect of noise on the synchronization However, some approaches for the synchronization of hyper-
of chaotic systems is also studigtD]. It is shown that syn- chaos with scalar chaos were proposed receff—2§.
chronization will not occur if driving dynamical chaos is There are also studies on the synchronization of high-
added with noise. This matches the common thought that idimensional spatiotemporal chaos with scalar driving chaos
low-dimensional systems, chaos is favored by small externgl14,29,3Q. As the discussions on noise-induced synchroni-
noise[9]. zation[15-25 by now are mainly based on simple chaotic

The system driven by noise is a stochastic one. Can systems such as the logistic map or Lorenz equations, an
synchronization state be achieved when two identical sysinteresting question arises: Can a common scalar noise drive
tems with slightly different initial conditions are driven by two identical hyperchaotic systems to synchronization? The
the same noise? This question is closely related to the prolwain objective of this paper is to give a definite answer to
lem of generalized synchronizati¢a,11-14. However, the  this question by using a chaotic neural netw[8k,32 as an
driving signal used here is noise rather than chaos. Recentlgxample. Similar to the synchronization of hyperchaos
considerable attention has been drawn to the problem dfi4,26], one of the possible applications of noise-induced
noise-induced synchronization in chaotic systdit5—25.  synchronization with a hyperchaotic system is in the field of
With these studies and arguments, the effects of noise ogecure communications.
chaos are investigated in detail. The conditional Lyapunov In the first part of the paper, we will show that two iden-
exponent(CLE) can be defined for systems driven by noisetical low-dimensional hyperchaotic systems driven by a suf-
[15]. With small noise, the driven systems often still possessiciently large noise can be transformed to a stochastic state
positive CLE’s. Although they cannot achieve a chaotic syn-and achieve synchronization. Here we will also point out
chronization stat¢15,24], two chaotic systems subjected to that, when the CLE’s of the system driven by noise are posi-
the same noise with a sufficiently large amplitude have aive, it is the on-off synchronizing intermittent dynamics that
much higher probability of approaching each other than incauses the chaotic trajectories to have a much higher prob-
the absence of noidd9]. As a result, finite-precision syn- ability to approach each other. As a result, finite-precision
chronization can be obtained8,23. A chaotic attractor synchronization of chads8,23 is obtained.
means that the overall rate of expansion of the trajectories is Neural networks are systems formed by a large number of
larger than that of contraction. Disturbed by a sufficientlyinterconnected neurons. For these systems, the correspond-
large noise, the trajectories are often driven out of this chaing chaotic attractors are often referred to as spatiotemporal
otic attractor. In this case, if the system is still stable, it oftenones. In this paper, we will discuss the possibility of the
implies that the overall rate of contraction of the trajectoriesoccurrence of noise-induced synchronization in high-

dimensional chaotic neural networks. The goal is to under-

stand how scalar noise drives the dynamics of the spatiotem-
*Electronic address: shuai@nerve.pc.uec.ac.jp poral chaotic neural networks to a stochastic synchronizing
"Electronic address: eekww@cityu.edu.hk state. This question is related to the recent research interest
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in understanding globally coupled systems driven by noise
[33-35. In Ref. [33], by using the dynamical mean-field
equation, it is pointed out that in high-dimensional systems
where chaos is due to interactions between nonchaotic neu
rons, noise can impair the information flow between these
neurons and therefore tends to suppress chaos. We will dis
cuss, in the view of synchronization, the case of neural net-4
works consisting of chaotic neurons. Our result entails a‘@ -
much stronger statement that, even for the high-dimensional
spatiotemporal complex system, the resultant highly erratic
and random trajectories become independent of the initial
positions; i.e., they fall into a synchronization state.
Consider a nonmonotonic neural network model that con- . . . .
sists ofN analog neuron$Si(t)}, i=1, ... N. Each neuron 0 50 100 150 200 250
S; is connected to all other neuroBsby couplingsJ;; . We t
use parallel dynamics for the updating of neurons:

FIG. 1. A plot of time versus the logarithm of the average ab-
_ i solute differencé AS(t)) of the two neural networks when the first
+1)="1(h, =1,...N. o 4 .
St =), =1, N @ neuron is driven by noise of amplitudg,=1.5.
Here h;(t) is the weighted input of théth neuron and is i i i ,
expressed as Computer simulations show that when the first neuron is
driven by noise with 7;=1.09, synchronization can be
N achieved. This can also be found in the second and the third
hi(t)= >, Ji;S(t), i=1,...N. (2)  neurons withn,=4.8 and 2.3, respectively. To show the
=1 distance between the two trajectories, the average absolute

o . ) . difference{AS(t)) is defined:
The activation functiorf (x) of the neurons is nonmonotonic

[31,32:

1 N
F(x)=tanh(ax) exp(— Bxd). @ (As()=5 2 IS/ (H-S(0)]. ®

With the function(3), we have|S|<1. A significant differ-
ence between this and the logistic map investigated i
[17,20,2] is that the input space is unbounded for the forme

map, while it is bounded tp—1, 1] in the latter case. AS @  The CLE's can be calculated from the tangent space of
result, a noise with large amplitude often destroys the stablg,, o ral dynamics. Again, the first neuron of the chaotic

attractor of the logistic map before the stable synchronization o, ai network is driven by a common noise term and a plot

state is reached. This is the reason why noise cannot drivgf the four CLE’s versus noise amplitudg is shown in Fig
chaos to a synchronization stqf0,21]. In contrast to this, a 2, in which one can see that wheg>1.244, the four CLE’é

function W'Fh an _|nf|n|te Input boundary is used Ih our study are all negative, and so stable hyperchaotic synchronization
and so noise with any amplitude can be applied. Thus, a

different result is obtained.
We consider a four-neuron model with parameters
=6.0 andB=10.0 and synaptic connection mattx

Figure 1 shows a plot of time versus the logarithm of the
hverage absolute differen¢A S(t)) when the first neuron is
"driven by noise withny=1.3.

1.0 01 -09 -03

05 09 02 O
)= -0.7 04 -03 0.1]° “

05 0.1 0.2 1.

In this case]S;|<0.58. Simulation results show that the at-
tractor is hyperchaotic with the four Lyapunov exponents
being 0.660, 0.353, 0.008, and0.714 (=0.002), respec-
tively. If there is no interconnection, i.el=0, each neuron
is in the chaotic state. Now we discuss the simulation results
of noise-induced synchronization with this hyperchaos.
Suppose that the corresponding neurons in the two iden- F|G. 2. The four CLE’s &;. i=1,...,4) of theneural net-
tical neural networks are disturbed by a common randomyorks versus noise amplitudg,. Here, region | corresponds to the
noise » with amplitude »,. Mathematically, asychronization state; region Il corresponds to the unstable finite-
precision synchronization of chaos with positive CLE; region Il
Si(t) + gorandont —1,1):=S(1). (5) corresponds to the stable stochastic synchronization state.

Mo
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can be obtained. For example, the four CLE’s ar@.075, 0
—0.713,—-1.932, and—4.805, respectively, when,=1.3.
Simulation results also show that synchronization can still
be achieved in the interval 1.695,<1.244 where the maxi-
mum CLE is positive. For example, whejpy=1.2, the four A
CLE’s are 0.055,—0.550, —1.595, and—4.173, respec- %
tively. This phenomenon is referred to as the finite-precision v
synchronization of chaddl8,23. It is pointed ouf 36] that
chaotic systems driven by noiger chao$ possess the on-off
intermittency property if both the following criteria are sat-
isfied: (a) there exists a lower-dimensional invariant hyper-
plane under the evolution of the system, dbythere exist
orbits entering and leaving every sufficiently small neighbor- . . , )
hood of the hyperplane. In fact, the two criteria are naturally 0 1 2 3 4 5 6
obeyed for the difference between the trajectofies, AS Mg
=S'—9). This is because it is the difference of the driven
trajectories, rather than the driven trajectory itself, that con- FIG. 3. A plot of noise amplitudey, versus the logarithm of the
structs an invariant hyperplane, i.AS=0. Here, we call it ~average distancé(és)) of the two trajectories when the param-
the on-off synchronizing intermittency. One can see that thé&ters of the two driven neural networks differ slightly.
on-off synchronizing intermittency is an intrinsic character ]
of synchronizing systems. As a result of this character, th@ne can see that the last three terms will not approach zero
trajectory can be driven, in a finite time interval, to the in- €8N whensS(0)=0. As a result, synchronization with
variant hyperplane XS=0), i.e., the contracting region, 5_8(t>0_)eo is forbidden in aI_I cases, as conflrme_d by our
with high frequency even when the maximum CLE is 5|_mulat|on results. However, if the parameters differ only
slightly positive. As a result, the trajectories are driven toSlightly, the last three terms are very small and so weakly
approach each other. When the distance between differeRPise-induced synchronization can be observed. Weak syn-
trajectories is smaller than the finite precision of computechronization means that the difference of the two trajectories
calculations, it is set to zero and remains at that value there> and S’ remains small in average. We define the average
after. Finite-precision synchronization of chaos is thusdistance((AS)) of the two trajectories as
achieved. For all the simulations reported in this paper, the
synchronization state corresponds to the situation that the
difference of two trajectories is smaller than 18 which
cannot be distinguished in our computer.
In real applications, the synchronization is often affectedan example is shown in Fig. 3 witf,=500 000 andT,
by the differences in parameters of the two driven systems=501 000. Compared with the first network, the slightly dif-
To investigate this, we let there be a small deviatifun ferent parameters of the second one are6.01 andJ;;

1 N Tq
T 2 & S-S0l ©

1
((A8))= lim

TOHoo

between the corresponding parameterand a’ of the two  —1.01. From the figure, one can see that the average distance
networks, i.e.,6a=a’'—a. The corresponding variational ((AS)) is smaller than 10°. It implies that, for sufficiently
equation Is small deviations in the parameters, the two driven trajecto-

ries remain weakly synchronized when the noise amplitude
is large enough.
oS(t+ 1)=f(a’,2 JijS{(t))—f(a,E Jiij(t)) From Fig. 3, one can see that, near the pajgt=1.1
) ) where finite-precision synchronization is achieved in the case
of identical driven systems, the average distance of the two
ot (@, 2} Ji;Si(1)) mismatch driven systems is in the order of 0.1. As a result of
=> dSi(t) its positive CLE, the finite-precision synchronization is un-
J 95 stable. Compared with 102 the disturbance caused by the
mismatch between the two driven systems can be considered
af(a,zj JijSi(1)) as a large noise. As a result, unstable finite-precision syn-
+ Sa+o0(da,8S). (7)  chronization can be easily destroyed by the disturbance.
da Simulation results also show that, if the noise signal that
drives one of the two systems is disturbed by tiny noise,
Suppose that there are also deviations in the paranseged finite-precision synchronization cannot be obtained.
the connecting matrid; we have In fact, neural networks are spatiotemporal systems
formed by a large number of neurofie.g., N=100) that
may possess spatiotemporal chaotic behavior. In the rest of

of of of ; : . L
SS(t+1) = —8S(1)+ —Sa+ —28 this paper, we discuss the possibility of scalar noise-induced
S ) 2 S S ga °* B p synchronization of spatiotemporal chaos. In REf4,30, as
a result of the cascade synchronizing dynamics, the spa-
+ Jf 8, ®) tiotemporal chaos of the coupled logistic map lattice can be
m -

m i driven to a synchronization state by scalar chaos. Different
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from this, here it is because of the strong synaptic connectior
that the scalar driving noise can be propagated to the whols
network immediately and drive the trajectory of the system
to the contracting region with high frequency. As a result, all
of the neurons are enforced to the stochastic synchronizatio
state gradually.

The phase-space region in which an attractor resides foz
chaotic dynamical systems can, in general, be divided intcg’
two subregions where a trajectory experiences either purt
expansion or pure contraction. In particular, the expanding o1
contracting region is the region where an infinitesimal vector
in the tangent space either expands or contracts under th
dynamics. A typical path to synchronization is that the tra-
jectories are driven by a common signal to the contracting
region with high frequency, and so the CLE’s are negative. g
In our model, the contracting regions are in the vicinity of

the two extreme points and the two asymptotic points of thx?ween the two second neurons, i8S,(t) = Si(t) — Sy(t). Here for

nonmonotonic neural functiof(x), i.e.,df(x)/dx<1. Now , : L2
let the first neuron of the neural networks be driven by noisefach fixedro, 200AS,(t)'s are drawn with timet from 20 000 to

. . . . 20 300.
the weighted input of théth neuron is

3.0 3.2

FIG. 4. A plot of noise amplitudeyy versus the difference be-

larger 8 means a wider asymptotic contracting region. The

N . consequence is that noise with a smaller amplitude can also
hi(D)=Jin(1) + 241 JiSi(t), i=1,...N. (10 grive the networks to synchronization. To summarize, for a
J fully connected neural network.e., J;#0 for all i,j), a
If all J;;'s (i=1, ... N) are nonzero and the noise am- Stochastic synchronization state can always be achieved for

plitude 7, is large enough, due to the random character ofNY neuron driven by noise. _ _
connectiond, the second term on the right-hand side of Eq. The results of computer simulations confirm these conclu-
(10) approaches zero whei is very large. It is very small Sions. In the simulation, the neural network consistsNof

when compared with the first terdn, 7(t) becauseéd;; 7(t)| =100 neurons Witha_y=6.0 andB=10.0. The elements of
is large enough with high probability. In other words, the the connecting matrix are randomly selected from the range
weighted inputh;(t) is mainly determined by the term 0.5<]J;;|<1.0. Both first neurons of the two identical neural

Jun(b), ie. networks are disturbed by a common random noise. For ex-
ample, Fig. 4 shows a plot of the noise amplitugleversus
hi(t)~J;17(t). (11 the difference between the two second neurons,A8,(t)
=S,(t) — S,(t), with time from 20 000 to 20 300. Simulation
Consider the variational equation for the difference betweemesults show that when the noise amplitugig=2.68, syn-
the two trajectories: chronization can be achieved in this example. Figure 5
shows a plot of time versus the logarithm of the average
, absolute differenc€AS(t)) between two trajectories with
65 (t+1)=f (hi)zl Jij 6S;(1), (12 170=2.9. One can see that, at time 7400, all the neurons
: are in synchronization states and the average absolute differ-
with ence is smaller than 162

N

f'(h)=exp(— Bhf)[asecﬁ(ahi) —2Bh; tanh(ah;)].
(13

To let|8Si(t+1)|<|8S(t)[, one can see that exp-Bh?) is
an important term; i.e.,B.Jizan(t) should be large enough.
For a given neural network, a sufficiently large common A
noise means that the trajectories are driven to the asymptotics
contracting region with high frequency. If the overall con-
traction rate of the driven trajectories is higher than the ex-
pansion one in the divergent regime, the distance betweer
trajectories of the systems in the phase space decreases wi
time, and so the system is transformed to a stable stochasti
attractor. In short, if a neuron connected to all other neurons -1 L Ve . L L
. . . . . 0 1000 2000 3000 4000 5000 6000 7000
of the neural network is driven by a sufficiently large noise,
a stochastic synchronizing state can always be achieved. I
all |J;1's are large enough, noise with small amplitude is  FIG. 5. A plot of time versus the logarithm of the average ab-
capable of driving the networks to synchronization. Thesolute differenceg/AS(t)) between two trajectories of neural net-
asymptotic contracting region is mainly determinedfyA  works with noise amplitude;,=2.9.

t
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Now we discuss the situations that some of dhgs are  somelJ;,’s are zero, it is difficult to determine whether the
zero. The first case is that onllf;=0. As a result, two neural networks can be driven to synchronize by the
common noise. This depends on the particular connection
matrix. Only when all of the CLE’s are negative can a stable
synchronization state be obtained, as confirmed by the simu-
lation results. A simple example is a hetwork with a connec-

N
hl(t):jzz J1;Si(1),

hi(t)=Ji1n(t), i=2,...N. (14 tion matrix stated in Eq(4). Simulation results show that,
) ] o with the fourth neuron driven by noigeo matter how large
These equations imply that once tite neuronsS (with i the noise amplitude jsthe two second neurons of the net-

>1) are driven by a sufficiently large noise to synchroniza-works will not approach each other. The CLE associated
tion, the first neurorSl is also driven to SynChronlzatlon. with the second neuron is a|WayS positive_

The situation with some othé,’s equal to zero is rather  |n summary, in fully connected neural networks, scalar
complex. The simplest case is that odig (i>1) equals noise can drive low-dimensional hyperchaos or high-
zero, e.9.J»=0. Then we have dimensional spatiotemporal chaos to a stochastic synchroniz-

N ing state. When the amplitude of scalar noise is large
_ enough, it can be propagated to all the neurons simulta-

— + Q. .
h2(1)=J225,(t) ,2‘3 I25 (), (15 neously and enforce the networks’ trajectory to the contract-

ing regions with high frequency. As a result, trajectories with
N different initial conditions will be driven to approach each
hi()=Ji1 () + 328D+ X, J;Si(1), i=13,... N. other with high frequency. If the neuron driven by noise is
172 16 not connected to all other neurons of the network, a synchro-
(16) nization state cannot always be obtained no matter how large
As the mean oh,(t) is zero, the term exp{h?) has a high the driving noise amplitude is. If the CLE's of the driven
probability to approach 1. Thus, unlike the other system are a]l negative, they will fall into a stable stocha;nc
exp (_Bhiz) (wherei #2), the term expfﬁh%) seldom con- synchronlz'anon state. When the parameters of the two dnven
tributes a sufficiently small value to EGL3) even when the Systems differ slightly, weakly noise-induced synchroniza-

noise 5(t) is large enough. As a result, one cannot alwayst'on can be obtained. Finite-precision synchronization with

obtain| 3S,(t + 1)| <| 8S,(t)| with large enough noise. It im- positive CLE is also observed. It is caused by the on-off
plies that, when the two neural networks are driven by Lynchronizing intermittency of the driven systems. As a re-

: - : iy It of its unstable character, chaotic finite-precision syn-
common noise, the initial differenceAS,(0)=S;(0) sult of 1ts ) . .
~S,(0)#0 can always have an effect upais,(t). Al chronization cannot be achieved if the two driven systems

though noise with a large amplitude can drive the neu®ns are mismatched.

(i#2) of the two neural networks to approach each other, The authors would like to thank the City University of
Eq. (16) shows that the differenc&S,(t) always affects the Hong Kong for providing the Strategic Research Grant for
values of these neurons. One can say that, in the case thhis work.
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